Importance Sampling for Online Planning under Uncertainty

نویسندگان

  • Yuanfu Luo
  • Haoyu Bai
  • David Hsu
  • Wee Sun Lee
چکیده

The partially observable Markov decision process (POMDP) provides a principled general framework for robot planning under uncertainty. Leveraging the idea of Monte Carlo sampling, recent POMDP planning algorithms have scaled up to various challenging robotic tasks, including, e.g., real-time online planning for autonomous vehicles. To further improve online planning performance, this paper presents IS-DESPOT, which introduces importance sampling to DESPOT, a state-of-the-art sampling-based POMDP algorithm for planning under uncertainty. Importance sampling improves the planning performance when there are critical, but rare events, which are difficult to sample. We prove that IS-DESPOT retains the theoretical guarantee of DESPOT. We present a general method for learning the importance sampling distribution and demonstrate empirically that importance sampling significantly improves the performance of online POMDP planning for suitable tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Multiagent Coordination with Distributed Online Open Loop Planning

We propose distributed online open loop planning (DOOLP), a general framework for online multiagent coordination and decision making under uncertainty. DOOLP is based on online heuristic search in the space defined by a generative model of the domain dynamics, which is exploited by agents to simulate and evaluate the consequences of their potential choices. We also propose distributed online Th...

متن کامل

On the Probabilistic Completeness of the Sampling-based Motion Planning Methods Under Uncertainty

This paper extends the concept of probabilistic completeness defined for the motion planners in the absence of noise, to the concept of “probabilistic completeness under uncertainty” for the motion planners that perform planning in the presence of uncertainty. According to the proposed definition, an approach is proposed to verify the probabilistic completeness under uncertainty. Finally, it is...

متن کامل

Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty

This article presents a novel approach, named MCMP (Monte Carlo Motion Planning), to the problem of motion planning under uncertainty, i.e., to the problem of computing a low-cost path that fulfills probabilistic collision avoidance constraints. MCMP estimates the collision probability (CP) of a given path by sampling via Monte Carlo the execution of a reference tracking controller (in this pap...

متن کامل

Simultaneous Localization and Planning for Physical Mobile Robots via Enabling Dynamic Replanning in Belief Space

Simultaneous planning while localizing is a crucial ability for an autonomous robot operating under uncertainty. This paper addresses this problem by designing methods to dynamically replan while the localization uncertainty or environment map is updated. In particular, relying on sampling-based methods, the proposed online planning scheme can cope with challenging situations, including when th...

متن کامل

A Domain Decomposition Approach for Uncertainty Analysis

This paper proposes a decomposition approach for uncertainty analysis of systems governed by partial differential equations (PDEs). The system is split into local components using domain decomposition. Our domain-decomposed uncertainty quantification (DDUQ) approach performs uncertainty analysis independently on each local component in an “offline” phase, and then assembles global uncertainty a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017